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1. Introduction

Quantum fluctuations, especially quantum vacuum fluctuations, have been subjected to

extensive studies, since the emergence of quantum theory which has profoundly changed

our conception of empty space or vacuum. Two well-known examples of experimentally

verified effects resulting from changes of vacuum fluctuations are the Lamb shift and the

Casimir effect [1 – 3]. A fundamental feature to be expected of any field which is quantized

is the quantum fluctuations. Therefore, test particles under the influence of these quantum

field fluctuations will no longer move on the classical trajectories, but undergo random

motion around a mean path. It will be very desirable and quite interesting to bring to

light the basic features of this kind of random motion driven by quantum, as opposed to

classical or thermal-like fluctuations.

In investigating the random motion of test particles driven by quantum field fluctua-

tions, a natural first step is to examine the case of vacuum, since, quantum-theoretically,

quantum fields fluctuate even in vacuum. However, because of the divergences that arise

in quantum field theory in unbounded Minkowski spacetime when vacuum is concerned, it

appears that the most tractable cases of random motion of test particles in vacuum would

be those in which changes of vacuum fluctuations occur due to the presence of bound-

aries or non-trivial topology in a local flat space-time. The simplest example of this is

the random motion of a charged test particle caused by changes in the electromagnetic

vacuum fluctuations near a perfectly reflecting plane boundary, which has recently been

investigated [4].1 There, the effects have been calculated of the modified electromagnetic

vacuum fluctuations due to the presence of the boundary upon the motion of a charged

test particle. In particular, it has been shown [4] that the mean squared fluctuations in

velocity and position of the test particle normal to the plane can be associated with an

1Another example of this quantum random motion is the random motion of photons due to modified

quantum fluctuations of the quantized gravitational field [5 – 8], which induces quantum lightcone fluctua-

tions.
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effective temperature of

Teff =
α

π

1

kBmz2
= 1.7 × 10−6

(

1µm

z

)2

K = 1.7 × 102

(

1Å

z

)2

K , (1.1)

where kB is Boltzmann’s constant and z is the distance from the boundary. This might

be experimentally accessible in the future. These results have also been generalized to the

case of two parallel reflecting plates [9].

As further step along the line, naturally, one would be interested in a physically more

interesting case, i.e., the random motion of test particles caused by quantum field fluctu-

ations at non-zero temperature (as opposed to zero temperature vacuum fluctuations) in

the unbounded flat spacetime and flat spacetimes with boundaries. These are just what

we want to address in the present paper. We would like to study the random motion of

a charged test particle subject to ever-existing quantum electromagnetic fluctuations at

finite temperature, i.e., the random motion driven by quantum fluctuations of a thermal

bath of photons. It will be demonstrated that, for the random motion driven by quantum

electromagnetic field fluctuations at finite temperature, no dissipation is needed for the

velocity dispersion of the test particle to be bounded at later times, in contrast to that

driven by thermal noise. Moreover, it will be shown that, in the unbounded flat spacetime,

generally the random motion driven by quantum fluctuations is one order of magnitude

less significant than that driven by thermal noise. However, it could be strengthened if the

quantum field fluctuations are to be modified by the presence of a reflecting plane boundary

and even become orders of magnitude more significant than that of thermal origin, when

the system temperature is low.

2. Brownian motion of the test particle in Minkowski space at finite

temperature

First, let us now consider the motion of a charged test particle subject to quantum elec-

tromagnetic field fluctuations at finite temperature T in the Minkowski (unbounded flat)

space. We will use Lorentz-Heaviside units with c = ~ = 1 in our discussions. In the

limit of small velocities, the motion of a charged particle is described by a non-relativistic

equation of motion (Langevin equation) with a fluctuating electric force

dv

dt
=

e

m
E(x, t) ; (2.1)

assuming that the particle is initially at rest and has a charge to mass ratio of e/m. The

velocity of the charged particle at time t can be calculated as follows

v =
e

m

∫ t

0
E(x , t) dt =

(

4πα

m2

)1/2 ∫ t

0
E(x , t) dt , (2.2)

where α is the fine-structure constant. The mean squared fluctuations in speed in the

i-direction can be written as (no sum on i)

〈∆v2
i 〉 =

4πα

m2

∫ t

0

∫ t

0
〈Ei(x, t1) Ei(x, t2)〉β dt1dt2 , (2.3)
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where 〈Ei(x, t1) Ei(x, t2)〉β is understood to be the renormalized electric field two-point

function at finite temperature T = 1
kBβ and we have used the fact that 〈Ei〉β = 0. We

adopt the well-established renormalization procedure in quantum field theory in which

physical quantities are calculated and supposedly experimentally measured against vacuum.

Therefore, the renormalized electric field two-point function is obtained by subtracting

the vacuum contribution. We have, for simplicity, assumed that the distance does not

change significantly on the time scale of interest in a time t, so that it can be treated

approximately as a constant. If there is a classical, nonfluctuating field in addition to

the fluctuating quantum field, then eq. (2.3) describes the velocity fluctuations around the

mean trajectory caused by the classical field. Note that when the initial velocity does

not vanishes, one has to also consider the influence of fluctuating magnetic fields on the

velocity dispersion of the test particles. However, it has been shown that this influence is,

in general, of the higher order than that caused by fluctuating electric fields and is thus

negligible [11].

Let us note that the two point function for the photon field at finite temperature,

Dµν
β (x, x′) = 〈0|Aµ(x)Aν(x′)|0〉β , can be written as an infinite imaginary-time image sum

of the corresponding zero-temperature two-point function, Dµν
0 (x − x′), i.e.,

Dµν
β (x, x′) =

∞
∑

n=−∞

Dµν
0 (x − x′, t − t′ + inβ) , (2.4)

where argument x stands for a four-vector, i.e., ( x, t ). In the Feynman gauge, we have

Dµν
0 (x − x′) =

ηµν

4π2(∆t2 − ∆x2)
. (2.5)

By taking the four dimensional curl in x and in x′, we can obtain the electric field two-point

function from that of the photon field as follows

〈Ei(x)Ej(x
′)〉 = 〈F0i(x)F0j(x

′)〉 = ∂0∂
′

0〈Ai(x)Aj(x
′)〉 + ∂i∂

′

j〈A0(x)A0(x
′)〉 . (2.6)

The components of the renormalized electric field two-point function at finite temperature,

〈E(x, t1) E(x, t2)〉β, can be obtained by taking curl of eq. (2.4) according to eq. (2.6) and

dropping the vacuum term (n = 0 term in the sum). The result is

〈Ex(x, t′)Ex(x, t′′)〉β = 〈Ey(x, t′)Ey(x, t′′)〉β = 〈Ez(x, t′)Ez(x, t′′)〉β

=
1

π2

∞
∑

n=−∞

′ 1

(∆t + inβ)4
=

π2

3β4

(

2 + cosh
2π∆t

β

)

csch4

(

π∆t

β

)

− 1

π2∆t4
. (2.7)

Here a prime means that the n = 0 term is omitted in the summation. It is interesting

to note that the first term in the above result is the usual finite temperature correlation

function that satisfies the Kubo-Martin-Schwinger relation while the last is the vacuum

term (zero temperature contribution). Therefore, the renormalized correlation function

does not obey the KMS relation. Mathematically one can obtain a regularized correlation

function that satisfies the KMS relation by subtracting both the n = 0 and n = 1 terms.

– 3 –
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However, the problem is that one does see any physical motivation in removing the n = 1

mode in contrast to in deducting the n = 0 one which amounts to taking away the vacuum

contribution. Let us also note here that the two-point electromagnetic field correlation

functions in black body radiation have been examined in the literature, see for example,

ref. [10, 12].

Substituting the above results into eq. (2.3) and carrying out the integration, we find

that the velocity dispersions are given by

〈∆v2
x〉 = 〈∆v2

y〉 = 〈∆v2
z〉 =

e2

m2

∫ t

0

∫ t

0
〈Ex(x, t′) Ex(x, t′′)〉β dt′ dt′′

=
e2csch2(πt

β )

18π2m2β2t2

[

5π2t2 + 3β2 + (π2t2 − 3β2) cosh
2πt

β

]

. (2.8)

In the low temperature limit, i.e., when β À t, we have

〈∆v2〉 = 〈∆v2
x〉 + 〈∆v2

y〉 + 〈∆v2
z〉 =

e2π2

15m2β2

(

t

β

)2

− 2e2π4

189m2β2

(

t

β

)4

. (2.9)

This result shows that the velocity dispersion decreases very quickly as inverse powers of

β4 and it approaches zero when β → ∞ as expected. While in the high temperature limit,

i.e., when t À β,

〈∆v2〉 =
e2

3m2β2
− e2

π2m2t2
. (2.10)

To get a concrete idea of how large t should be in order that the condition t À β is

fulfilled, let us assume that the temperature T is about ∼ 102 Kevin, which can well be

considered as high since we are discussing a quantum effect, then the condition becomes

t À 5.7 × 10−14sec.. This is rather small. It is interesting to note that, for the random

motion driven by quantum fluctuations at finite temperature here, no dissipation is needed

for 〈∆v2
i 〉 to be bounded at late times in contrast to the random motion due to thermal

noise.

The mean squared position fluctuations can be calculated as follows

〈∆x2〉 = 〈∆y2〉 = 〈∆z2〉 =

∫ t

0
dt1

∫ t1

0
dt′

∫ t

0
dt2

∫ t2

0
dt′′ 〈Ex(x, t′) Ex(x, t′′)〉β

=
e2

18π2m2β2

(

π2t2 − 6πtβ coth
πt

β
+ 6β2

[

1 + ln

(

β

πt
sinh

πt

β

)]

)

. (2.11)

The limiting forms for both low and high temperature approximations are respectively

〈∆x2〉 =
e2π2t4

180m2β4
− π4t6

1701m2β6
, β À t , (2.12)

and

〈∆x2〉 =
e2t2

18m2β2
− e2

3π2m2
ln

πt

β
+

e2

3π2m2
, t À β . (2.13)

Eq. (2.13) reveals that
√

〈∆x2〉 grows linearly with time, and thus in principle can increase

indefinitely with time. However, recall that we have assumed that the particle do not move

very far on the time scale of interest in a time t. Therefore, it is quite compelling for us to
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figure out under what conditions eq. (2.13) is compatible with our initial approximation,

which disregards the displacement of the particle. For this purpose, let us note that a

natural time scale of interest here is set by β, the inverse of the temperature of the system.

Hence, we expect our results to be a good approximation as long as 〈∆x2〉 ¿ β2. This

equivalent to requiring that

t ¿ 3√
2απ

(mβ)β . (2.14)

Note that mβ is the ratio of the temperature corresponding to the mass of the particle

to that of the system, which is typically very large. Take an electron for example, the

temperature corresponding to the electron mass is ∼ 5.93 × 109 K. Therefore, our results

can be valid as long as the system temperature is not any close to this value. This is

expected to be fulfilled by any experiment at the Earth. Finally, let us note that this

kind of random motion driven by quantum fluctuations is superimposed on that driven

by thermal noise. Let the root mean squared fluctuations in velocity due to the random

motion driven by quantum fluctuations be denoted by∆vqm =
√

〈∆v2〉 and that by thermal

noise at the same temperature by ∆vth, then it is easy to show that

∆vqm

∆vth
=

2

3
(πα)1/2 ≈ 0.1 = 10−1 . (2.15)

This indicates that typically the random motion driven by quantum fluctuations is one

order of magnitude less significant than that driven by thermal noise.

3. Brownian motion of the test particle near a reflecting boundary at

finite temperature

Now a question arises naturally as to what happens if we modify the quantum field fluctua-

tions by adding a boundary in space, a perfectly reflecting plane, for example. In particular,

we are interested in whether the random motion driven by quantum field fluctuations at

finite temperature will be strengthened or weakened by the modification. Suppose such

a reflecting plate be located at the z = 0 plane and the test particle be initially at a

distance z from the plate, then the electric field two-point function at finite temperature,

〈E(x, t1) E(x, t2)〉β , can be found by the method of double images with one involving an

image source displaced in the z-direction and the other involving an infinite sum of tem-

perature images displaced in imaginary time. At a point a distance z from the plane, the

results are

〈Ex(x, t′)Ex(x, t′′)〉β = 〈Ey(x, t′)Ey(x, t′′)〉β

=

∞
∑

n=−∞

′ 1

π2(∆t + inβ)4)
−

∞
∑

n=−∞

(∆t + inβ)2 + 4z2

π2[(∆t + inβ)2 − 4z2)]3

≡ Fβm(∆t, z) + F x
βb(∆t, z) , (3.1)

and

〈Ez(x, t′)Ez(x, t′′)〉β

– 5 –
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=

∞
∑

n=−∞

′ 1

π2(∆t + inβ)4)
−

∞
∑

n=−∞

1

π2[(∆t + inβ)2 − 4z2)]2

≡ Fβm(∆t, z) + F z
βb(∆t, z) , (3.2)

where we have defined

Fβm(∆t, z) =
π2

3β4
(2 + cosh

2π∆t

β
)csch4

(

π∆t

β

)

− 1

π2∆t4
(3.3)

and

F x
βb(∆t, z) = − 1

64πβz3

(

coth
π(∆t − 2z)

β
− coth

π(∆t + 2z)

β

)

+
1

32β2z2

(

csch2 π(∆t − 2z)

β
+ csch2 π(∆t + 2z)

β

)

− π

8β3z

(

coth
π(∆t − 2z)

β
csch2 π(∆t − 2z)

β

− coth
π(∆t + 2z)

β
csch2 π(∆t + 2z)

β

)

, (3.4)

F z
βb(∆t, z) = − 1

32πβz3

(

coth
π(∆t − 2z)

β
− coth

π(∆t + 2z)

β

)

+
1

16β2z2

(

csch2 π(∆t − 2z)

β
+ csch2 π(∆t + 2z)

β

)

(3.5)

Clearly, Fβm is the electric field two-point function at finite temperature in Minkowski

space while F x
βb and F z

βb are the correction induced by the presence of the boundary. With

the electric field two-point function given, the velocity dispersion in the x-direction can be

calculated out to be

〈∆v2
x〉 =

e2

m2

{

(

1

9β
− 1

3π2t2
+

csch2 πt
β

3β2

)

− 1

16π2z2
ln

(

sinh π(t+2z)
β sinh π(2z−t)

β

sinh2 2πz
β

)

− 1

4πβz
coth

2πz

β
csch

π(t − 2z)

β
csch

π(t + 2z)

β
sinh2 πt

β

+
β

128π3z3

(

gβ(t, z) − gβ(t,−z)

)

}

. (3.6)

Here we have introduced a new function gβ(t, z), which is defined by

gβ(t, z) = PolyLog[ 2, e
2π(t−2z)

β ] + 2PolyLog[ 2, e
4πz
β ] + PolyLog[ 2, e

−2π(t+2z)
β ] , (3.7)

where the polylogarithm functions, PolyLog[n, z, ] are given by

PolyLog[ n, z ] =
∞
∑

k=1

zk

kn
≡ PL[ n, z ] . (3.8)

– 6 –
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The velocity dispersion in the z-direction is given by

〈∆v2
z〉 =

e2

m2

{

(

1

9β
− 1

3π2t2
+

csch2 πt
β

3β2

)

− 1

8π2z2
ln

(

sinh π(t+2z)
β sinh π(2z−t)

β

sinh2 2πz
β

)

+
β

64π3z3

(

gβ(t, z) − gβ(t,−z)

)

}

. (3.9)

The mean squared fluctuations in both the transverse and longitudinal directions are eval-

uated to be

〈∆x2〉 =
e2

m2

(

t3

8πβz2
− t2

8πβz
coth

2πz

β
− t2

32π2z2
ln

[

4 sinh2 2πt

β

]

− t

2πβ

+
t

8π2z
ln

[

csch
π(t − 2z)

β
sinh

π(t + 2z)

β

]

)

+
e2

m2

(

β(t2 − 8z2)

128π3z3
PL[2, e

−2π(t+2z)
β ]

+
β(t2 − 8z2)

128π3z3
PL[2, e

4πz
β ] +

βt(t + 4z)

128π3z3
PL[2, e

2π(t+2z)
β ] +

β2

64π4z2
PL[3, e

4πz
β ]

+
β2(t − 2z)

128π4z3
PL[3, e

2π(t−2z)
β ] +

β3

256π5z3

[

PL[4, e
−4πz

β ] + PL[4, e
2π(t+2z)

β ]

]

+(z → −z)

)

, (3.10)

and

〈∆z2〉 =
e2

m2

(

t3

8πβz2
− t2

32π2z2
ln

[

4 sinh2 2πt

β

]

)

+
e2

m2

(

βt2

64π3z3
PL[2, e

−2π(t+2z)
β ]

+
βt2

64π3z3
PL[2, e

4πz
β ] +

βt(t + 4z)

64π3z3
PL[2, e

2π(t+2z)
β ] +

β2

32π4z2
PL[3, e

4πz
β ]

+
β2(t − 2z)

64π4z3
PL[3, e

2π(t−2z)
β ] +

β3

128π5z3

[

PL[4, e
−4πz

β ] + PL[4, e
2π(t+2z)

β ]

]

+(z → −z)

)

. (3.11)

Here (z → −z) stands for all the terms in the big brackets but with the sign of z flipped.

In the high temperature limit t À z À β, the velocity and position dispersions of the test

particle in the directions parallel to the plate are approximately given by,

〈∆v2
x〉 = 〈∆v2

y〉 ≈
e2

9m2β2
− e2

8πm2βz
+

e2β

128πm2z3
− e2

3π2m2t2
, (3.12)

and

〈∆x2〉 = 〈∆y2〉 ≈ e2

m2

(

t2

18β2
− t2

16πzβ
+

t

2πβ
− 1

3π2
ln

πt

β
+

1

3π2

)

, (3.13)

while for the direction normal to the plate, we have

〈∆v2
z〉 ≈

e2

9m2β2
+

e2

4πm2βz
+

e2β

64πm2z3
− e2

3π2m2t2
, (3.14)

– 7 –
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〈∆z2〉 ≈ e2

m2

(

t2

18β2
+

t2

8πzβ
+

2t

πβ
− 1

3π2
ln

πt

β
+

1

3π2

)

. (3.15)

Let us that note that, for z = 1µm, the condition z À β leads to the requirement that

the temperature of the system be much larger only than 10−3 K. Hence, depending on the

value of z, a very low temperature in experiment may be considered as high temperature for

the random motion discussed here. A comparison of the above results with eq. (2.10) and

eq. (2.13 ) reveals that the random motion driven by quantum field fluctuations at finite

temperature is reinforced in the normal direction and weakened in the parallel directions

by the presence of a reflecting plate, which modifies the quantum field fluctuations. It is

easy to see that even with this enhancement the random motion in the normal direction

driven by quantum fluctuations is still much less significant than that driven by thermal

noise. This is expected since when the temperature is high, the random motion should be

dominated by thermal noise.

When the temperature of the system is very low, i.e., when β À t and β À z, in the

x-direction, the dispersions of the test particle are approximated as follows

〈∆v2
x〉 ≈ e2

π2m2

[

t

64z3
ln

(

2z + t

2z − t

)2

− t2

8z2(t2 − 4z2)

]

+
32e2π4

945m2

t2z2

β6
, (3.16)

〈∆x2〉 ≈ e2

π2m2

[

− t2

24z2
+

t3

192z3
ln

(

t + 2z

t − 2z

)2

− 1

6
ln

(

t2 − 4z2

4z2

)

]

+
8π4e2

945m2

t4z2

β6
, (3.17)

and in the z-direction as follows

〈∆v2
z〉 ≈ e2

π2m2

t

32z3
ln

(

2z + t

2z − t

)2

+
64e2π4

945m2

t2z2

β6
, (3.18)

〈∆z2〉 ≈ e2

π2m2

[

t2

24z2
+

t3

96z3
ln

(

t + 2z

t − 2z

)2

+
1

6
ln

(

t2 − 4z2

4z2

)

]

+
π2t4

90β4
− 2π4(5t6 + 18t4z2)

8505β6
. (3.19)

The β independent terms in all the above expressions result from the Brownian motion

driven just by the quantum vacuum fluctuations, while β dependent terms represent the

temperature corrections. When β → ∞, the above results reduces to those given in ref. [4]

for the Brownian motion in vacuum. Clearly, in the low temperature limit, the Brownian

motion is dominated by the quantum vacuum fluctuations and the temperature corrections

are higher order and thus negligible. It is worth noting that, depending on the value of

the initial distance of the test particle from the plate, the temperature T may have to be

extremely low in order for the low temperature condition β À z to be obeyed. For example,

for z = 1µm, the temperature T must be lower than 10−3 K. Therefore, in reality, we are

more likely to face the high temperature limit, i.e., when t À β and z À β are satisfied.

– 8 –
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However, if the system temperature is so low such that β À t À z holds, then the

random motion driven by quantum field fluctuations could become much more significant

than the thermal random motion. For example, in this limit, the velocity dispersion of the

charged test particle in the z-direction can be estimated as

〈∆v2
z〉 ≈

e2

4π2m2

1

z2
+

64e2π4

945m2

(

t

β

)2( z

β

)2 1

β2
+

e2

3π2m2

1

t2
. (3.20)

Clearly the first term represents the contribution of quantum vacuum fluctuations, while

the second β dependent term is the correction induced by system temperature being non-

zero. With is result, it follows that in this case the ratio of the velocity dispersion due to

the random motion driven by quantum fluctuations to that driven by thermal noise at the

same temperature is

∆vqm

∆vth
=

(

α

π

)1/2(β

z

)

. (3.21)

This demonstrates that in the low temperature the random motion of quantum origin can

be orders of magnitude much more significant than the thermal random motion and thus the

quantum fluctuations are the dominant driving source of the random of the test particles

at low temperature. To experimentally verify the dominance of the random motion of the

quantum origin over that of thermal origin, one needs to cool the system to a significantly

low temperature, for example, for z ' 102µm, the system temperature, T has to be less

than 0.1 K. The smaller the value of z, the lower the temperature T has to be.

In conclusion, we have been concerned with an interesting problem of the random mo-

tion of charged test particles driven by quantum electromagnetic field fluctuations at finite

temperature. Here, the random motion is caused by ever-existing quantum electromagnetic

fluctuations of a thermal bath of photons. A very interesting feature of the random motion

discussed in the present paper, in contrast to that driven by thermal noise, is that no

dissipation is needed for the velocity dispersion of the test particle to be bounded at later

times. Our calculations also show that generally the random motion driven by quantum

fluctuations is one order of magnitude less significant than that driven by thermal noise

and it could be strengthened if the quantum field fluctuations are to be modified by the

presence of a reflecting plane boundary. In particular, in the case with a reflecting plane

boundary, the random motion of quantum origin in the direction normal to the boundary

could become orders of magnitude more significant than that of thermal origin, when the

system temperature is low.
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